12 research outputs found

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    The solution structure of the human retinoic acid receptor-beta DNA-binding domain.

    No full text
    The three-dimensional structure of the DNA-binding domain of the human retinoic acid receptor-beta (hRAR-beta) has been determined by nuclear magnetic resonance spectroscopy in conjunction with distance geometry, restrained molecular dynamics and iterative relaxation matrix calculations. A total of 1244 distance restraints were obtained from NOE intensities, of which 448 were intra-residue and 796 inter-residue restraints. In addition 23 chi and 30 phi dihedral angle restraints were obtained from J-coupling data. The two 'zinc-finger' regions of the 80-amino acid residue protein are followed by two alpha-helices that cross each other perpendicularly. There is a short stretch of b-sheet near the N-terminus. The alpha-helical core of the protein is well determined with a backbone root-mean-square deviation (r.m.s.d.) with respect to the average of 0. 18 angstrom and 0.37 angstrom when the side chains of residues 31, 32, 36, 61, 62, 65 and 69 are included. The r.m.s.d. for the backbone of residues 5-80 is 0.76 angstrom. For the first finger (residues 8-28), the r.m.s.d. of the backbone is 0.79 angstrom. For the second finger (residues 44-62) the r.m.s.d. is 0.64 angstrom. The overall structure is similar to that of the corresponding domain of the glucocorticoid receptor, although the C-terminal part of the protein is different. The second alpha-helix is two residues shorter and is followed by a well-defined region of extended backbone structure

    The solution structure of the human retinoic acid receptor-beta DNA-binding domain.

    No full text
    The three-dimensional structure of the DNA-binding domain of the human retinoic acid receptor-beta (hRAR-beta) has been determined by nuclear magnetic resonance spectroscopy in conjunction with distance geometry, restrained molecular dynamics and iterative relaxation matrix calculations. A total of 1244 distance restraints were obtained from NOE intensities, of which 448 were intra-residue and 796 inter-residue restraints. In addition 23 chi and 30 phi dihedral angle restraints were obtained from J-coupling data. The two 'zinc-finger' regions of the 80-amino acid residue protein are followed by two alpha-helices that cross each other perpendicularly. There is a short stretch of b-sheet near the N-terminus. The alpha-helical core of the protein is well determined with a backbone root-mean-square deviation (r.m.s.d.) with respect to the average of 0. 18 angstrom and 0.37 angstrom when the side chains of residues 31, 32, 36, 61, 62, 65 and 69 are included. The r.m.s.d. for the backbone of residues 5-80 is 0.76 angstrom. For the first finger (residues 8-28), the r.m.s.d. of the backbone is 0.79 angstrom. For the second finger (residues 44-62) the r.m.s.d. is 0.64 angstrom. The overall structure is similar to that of the corresponding domain of the glucocorticoid receptor, although the C-terminal part of the protein is different. The second alpha-helix is two residues shorter and is followed by a well-defined region of extended backbone structure

    Molecular dynamics simulations of ligand-induced backbone conformational changes in the binding site of the periplasmic lysine-, arginine-, ornithine-binding protein

    No full text
    The periplasmic lysine-, arginine-, ornithine-binding protein (LAOBP) traps its ligands by a large hinge bending movement between two globular domains. The overall geometry of the binding site remains largely unchanged between the open (unliganded) and closed (liganded) forms, with only a small number of residues exhibiting limited movement of their side chains. However, in the case of the ornithine-bound structure, the backbone peptide bond between Asp11 and Thr12 undergoes a large rotation. Molecular dynamics simulations have been used to investigate the origin and mechanism of this backbone movement. Simulations allowing flexibility of a limited region and of the whole binding site, with and without bound ligands, suggest that this conformational change is induced by the binding of ornithine, leading to the stabilisation of an energetically favourable alternative conformation

    Structure of the RXR–RAR DNA-binding complex on the retinoic acid response element DR1

    No full text
    The 9–cis retinoic acid receptor (retinoid X receptor, RXR) forms heterodimers with the all-trans retinoic acid receptor (RAR) and other nuclear receptors on DNA regulatory sites composed of tandem binding elements. We describe the 1.70 Å resolution structure of the ternary complex of RXR and RAR DNA-binding regions in complex with the retinoic acid response element DR1. The receptors recognize identical half-sites through extensive base-specific contacts; however, RXR binds exclusively to the 3′ site to form an asymmetric complex with the reverse polarity of other RXR heterodimers. The subunits associate in a strictly DNA-dependent manner using the T–box of RXR and the Zn–II region of RAR, both of which are reshaped in forming the complex. The protein–DNA contacts, the dimerization interface and the DNA curvature in the RXR–RAR complex are distinct from those of the RXR homodimer, which also binds DR1. Together, these structures illustrate how the nuclear receptor superfamily exploits conformational flexibility and locally induced structures to generate combinatorial transcription factors
    corecore